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THEORETICAL STUDY OF THE EFFECT OF GROUND

PROXIMITY ON THE INDUCED EFFICIENCY OF

HELICOPTER ROTORS

by Harry H. Heyson

Langley Research Center

Hampton, VA 23665

SUMMARY

A theoretical study of rotors in forward flight within ground effect

shows that the ground-induced interference is an upwash and a decrease

in forward velocity. The interference velocities are large, oppose

the normal flow through the rotor, and have large effects on the

induced efficiency. Hovering with small ground clearances may result
in significant blade stall. As speed is increased from hover in

ground effect, power initially increases rather than decreases. At

very low heights above the ground, the power requirements become non-
linear with speed as a result of the streamwise interference. The

streamwise interference becomes greater as the wake approaches the

ground and eventually distorts the wake to form the ground vortex

which contributes to certain observed directional stability problems.

The effects of the streamwise interference are of large magnitude
and cannot be ignored in ground effect analysis.

INTRODUCTION

Performance in forward flight close to the ground has significant
effects on the operational utility of helicopters. The decrease in

ground effect with forward speed has an important role in determin-

ing the maximum take-off performance of an overloaded helicopter

from a confined area (refs. 1,2). Directional control instabilities

at very low speed in ground effect have become a significant problem
(ref. 3), and have required extensive experimental studies (refs. 4-7).

References 4 and 5 have shown that the directional control problems

result from a combination of effects including the ground-induced
distortions of the wake and the increased power required as the heli-

copter is accelerated from hover in ground effect.



The favorable ground effect of the hovering rotor has been the subject
of numerousexperimental (refs. 8 to lO) and theoretical (refs. II to 14)
studies. Theoretical analysis of the rotor in forward flight has re-
ceived less attention (refs. 15,16); furthermore, even the available
treatments are approximate and omit significant features of the pro-
blem. For example, reference 15 models the rotor wake as a single
directional source with a flow pattern that is unrepresentative of
the columnar nature of a real rotor wake. Although reference 16 uses
a more plausible vortex cylinder to model the wake, the analysis was
restricted to the interference at the center of the rotor and it
omitted the streamwise interference velocities.

Little theoretical work has been done on the ground-effect probleq
subsequent to the publication of references 15 and 16; however, sub-
stantial effort has been applied to the related problem of wind-tunnel
interference (refs. 17 to 23). The results of the wind-tunnel interfer-
ence studies indicate the need for considering a number of features
omitted in the earlier ground-effect analyses. First, when very close
to a boundary such as the ground, the configuration must be represented
in detail including its attitude and its load distribution (refs. 13 to
20). Second, the horizontal or streamwise interference velocities
Crefs. 18,19) can not be omitted since they can be so large as to
determine the overall character of the flow (refs. 22,23) Indeed,
the magnitude of the interference velocities can be great enough to
influence the induced performance in a nonlinear manner sir_iI_r to
that described in reference 24. Finally, the wake skew annle used
for the calculations should not be that of momentum theory but should
be an effective skew angle adjusted to account for the vertical dis-
placements associated with wake roll-up (refs. 21 to 23).

The present study attempts to include r_any of the fo,'_uin, I f_:tures
into an ana]ysis of rotary wing ground effect in forward fliaht. The
effect of the ground is obtained in terms of horizontal and vertical
components of interference velocity. These interference velocities
are distributed nonuniformly over the rotor disk; however, the averaoe
horizontal interference velocity opposes the forward velocity, and
the average vertical interference velocity opposes the rotor induced
velocity. Thus, the interference decreases the mass flow through the
rotor and, at heights above the ground of practical interest, has a
major effect on induced power and also on the wake skew angle. These
effects are treated by suitably modifying the momentum theory of
references 24 and 25 so that it applies to forward flight in arcund
effect. The induced shaft powers are calculated and presented as
functions of forward speed, height above the around, and rotor angle
of attack.



Numerousexperimental and theoretical studies (refs. 4 to 7, 9, 12 to 14,
23) have described wake distortion effects which have significant
influence on the utility of helicopters in ground effect. The simple
rigid wake models used in the present analysis are not capable of
actually computing such distortions with any degree of accuracy.
Nevertheless, calculated flow-fields using these models do predict
the nature of such distortions and are of value in presenting a coherent
explanation of the observed distortions and the factors which cause
them. Somediscussion of wake distortion effects is included and is
illustrated by theoretically calculated examples.

SYMBOLS

D

g

H

L

P

Ph

D
S

Ps,h

R

u 0

V

VR

W

wo

Rotor drag, positive rearward

Force vector produced by rotor

Distance of rotor above ground

Rotor lift, positive upward

Power

Induced shaft power required to hover in free air with no
drag force

Induced shaft power

Induced shaft power required to hover with no drag force
in the presence of the ground

Rotor radius

Mean, or momentum, value of the streamwise component of rotor
induced velocity, positive rearward

Rotor forward velocity

Total aerodynamic velocity vector at the rotor

Resultant aerodynamic velocity at rotor (absolute value of V)

Net vertical velocity, w_+ Aw

Mean, or momentum, value of the vertical component of rotor
induced-velocity, positive upward (also induced velocity at
center of a uniformly loaded wing)



wh

w_

X,Y,Z

F

AU

_W

6u ,L

_w,D

_w,L

X e

Value of w0 when hovering in free air with no drag force.

Local value of rotor induced velocity

Cartesian coordinate axes centered in the rotor, X horizontal

and positive rearward, Z vertical and positive upward, Y

horizontal to the side to form a right-hand system (see
figure 1)

Distance measured from the origin along the X,Y,Z axis system

Rotor tip-path-plane angle of attack, the angle measured positive

upward from the flight direction to the ]eading edge of the
rotor disk (see figure I)

Circulation

Incremental streamwise interference velocity caused by the
presence of the ground, positive rearward

Incremental vertical interference velocity caused by the presence

of the ground, positive upward

Interference factor (general)

Factor proportional to the strea_vise component of ground inter-
ference resulting from the rotor drag force.

Factor proportional to the streamwise component of ground inter-
ference resulting from the rotor lift force.

Factor proportional to the vertical component of ground inter-

ference resulting from the rotor drag force

Factor proportional to the vertical component of ground inter-

ference resulting from the rotor lift force

Mass density of air

Wake skew angle, measured positive rearward from the vertical

(negative Z-axis)to the centerline of the wake (see figure I)

Effective value of )' in consideration of wake roll-up effects.



THEORY

GENERALAPPROACH

While the final form of the analysis must constitute a unified treatment,
it is more convenient to discuss a numberof individual items separately
at the outset. Consequently, the present paper will discuss first the
representation of the wake in free air. Then the modification to the
free-air wake necessary to represent ground effect will be considered.
Next, momentum-theoryconsiderations necessary to obtain the effect on
the rotor are derived, and then the roll-up of the wake is considered.
Finally, all of these separate considerations are combined into a system-
atic approach to computing the effect of ground proximity on the perform-
ance of the rotor.

ROTORWAKEIN FREEAIR

Directional source. A number of rotor wake models are available

for use in the analysis. Of these models, the directional source of

reference 15 is the simplest. Unfortunately, this wake model does not
lead to a wake with the columnar nature of a real rotor wake. Further-

more, its use (ref. 15) leads to a complete elimination of ground effect

at high speed which is contrary to the obvious result that ground effect

for a rotor at high speed should be similar to that for a wing. Because

of these deficiencies, this wake model is not used in the present analysis.

Skewed vortex cylinder. - In contrast to the directional source, the
skewed vortex cylinder wake of reference 26 does represent reasonably
well the nature of a real rotor wake. Furthermore, reference 27 has

shown that, when extended to representative disk-load distributions,

the skewed vortex-cylinder wake results in calculated induced flows which
match the measured flows over most of the rotor disk. Prior to the

advent of modern computers, the computational difficulties associated

with this wake model limited its application to regions where calculated

results were available in chart form (refs. 26 to 28, for example). Currently,

it is more appropriate and more economical to compute the flow-field by

direct numerical integration of the equations given in reference 29.

Sutiable FORTRAN subroutines will be found in Appendix C of reference 23.

Inclined doublet string. - If the rotor producing the skewed vortex-
cylinder is very small, or if the point of interest is far from the rotor

and its wake, each of the vortex rings making up the cylinder effectively

becomes small until, in the limit, each ring becomes a point doublet, and

the entire wake becomes an inclined string of doublets. This represen-

tation of the rotor wake was used for the "vanishingly-small" rotor of

reference 17 and is the fundamental building block of the system of wind-

tunnel corrections developed in references 18 to 20.



Obviously, a rotor is not small with respect to its height above the
ground for heights of practical interest (say, 0.5 to 2.0 rotor radii).
On the other hand, the simplicity of this wake model leads to cl()sed-
form expressions for the flow, bothin free air and in the presence of
the ground (refs. 17,18). Although the numerical results may contain
substantial errors, the simplicity of the results allows one to draw
conclusions as to the magnitude and importance of several effects.

Nest of doublet strings. - As indicated in reference 18, and
carried to fruition in references 19 and 20, the restriction to a

vanishingly small rotor inherent in the inclined doublet string can
be removed by superposing the flow fields of a nest of such doublet

strings. The superposed flow fields of the doublet strings will

approximate the flow field of the skewed vortex cylinder more closely
as the number of strings comprising the nest is increased. When 20

doublet strings are used, as in references 19 and 20, the flow field

is essentially equivalent to that of the vortex cylinder at distances
as small as a few tenths of a rotor radius from the wake.

Although the substitution of a nest of doublet strings for a vortex

cylinder may seem superfluous at first glance, several advantages are

inherent in the procedure. First, computational time is significantly

reduced - by an order of magnitude for a uniformly loaded rotor, and
by two orders of magnitude for nonuniformly loaded rotors. Further-

more, additional flexibility is obtained since, as will be shown

subsequently, this representation avoids certain restrictions inherent

in the vortex-cylinder representation.

INTERFERENCE IN GROUND EFFECT

Wake. - The rotor wake in ground effect is presumed to flow along
strai_inclined path from the rotor disk to its intersection with

the ground. It is then allowed to flow off along the ground to infinity

in the free-stream direction. This behavior is extremely linearized

when compared to the real rotor wake, and _t is obviously in contrast

to the required axisymmetric flow on the ground in hover. Nevertheless,

it is at least crudely representative of the true behavior of the wake

when the rotor has a forward velocity. Furthermore, references 22 and 23

have demonstrated that these assumptions result in a flow field which

would produce the observed wake flow patterns if the theoretical wake
were allowed to deform.

Ground effect by superposition. - Under the assumption that the free-

air wakes do not deform other than in the stylized bend at the ground,

the flow field in ground effect can be obtained by a systematic super-

position of any of the free-air wakes considered herein. This procedure
is illustrated schematically in figure 2.
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The free air wake, shown in figure 2(a), is translated, together with

its flow field, downward along the wake axis to the location of the
ground as in figure 2(b). Subtraction of the translated semi-infinite

wake and its flow field from the original wake and flow field results

in the finite length of wake shown in figure 2(c). The portion of

the wake running along the ground is obtained by increasing the wake

skew angle to 900 (figures 2(d) and 2(e))and then translating this
flat wake and its flow field to coincide with the lower end of the

truncated cylinder (figure 2(f)). The indicated addition of wakes and

flow fields results (figure 2(g)) in the required above-ground portion
of the wake.

The wake of figure 2(g) requires an image system in the ground to meet

(by symmetry) the required condition of zero flow through the ground.

For the present study, where the disk loading is assumed axisymmetric,

the image system in the ground is achieved by a rotation about the

intersection of wake and ground (figure 2(h)). Addition of the wakes

and flow fields of figures 2(g) and 2(h) results in the complete wake

system and its flow field as sketched in figure 2(i).

The foregoing sequence would require an additional step if the rotor

loading was not at least laterally symmetric. In that case, it would

be necessary to invert the Y-axis and the direction of the lateral

velocities of the image vortex system prior to the final addition.

The field resulting from the superpositions is that for the entire

wake and image system. Ground effect is specifically defined as the

difference in flow between free air and in the presence the ground;

that is, ground effect is the difference in the flows caused by the
vortex systems of figures 2(a) and 2(i). Thus, it could be obtained

from an additional subtraction; however, it is simpler to omit the

original free-air wake from the calculation at the outset. Indeed,

any other course can lead to numerical difficulties with singularities

when using some of the current wake models.

Choice of wake model. - If the rotor angle of attack is not zero,
the initial translation of the wake (figure 2(b)) results in a wake
whose plane of origin does not coincide with the plane of the ground.
In this case, the total superposition scheme of figure 2 fails completely.
Thus, the skewed vortex-cylinder model is restricted to the study of
conditions where m = 0°. Since an inclined doublet string has no finite
diameter, it can be used when sis not zero; however, that representation
is inadequate for most quantitative purposes. Provided that each doublet
string involved is carried through the ground-effect superpositions



individually prior to nesting the set of strings comprising the total
nested wake model, that model can be used for any angle of attack.

Computer programs. - The initial applications of this method
(refs. 12, 13) were accomplished by manual calculations based on
charts of induced velocity contours near a rotor. Such methods are too
cumberson in the light of current computer capabilities. A FORTRAN
Droqram, needinq only minor changes, given in Appendix C of reference
23, is suitable for calculations involving wakes modelled as inclined
vortex cylinders. Similarly, reference 20 gives FORTRAN programs
usuable when the wake model is either a single doublet string or a
nest of doublet strings. In all of these programs the main objective
was to calculate wind-tunnel interference. Considerable computer time
can be saved by disabling the DO-loops which provide the additional
images required to represent the three additional boundaries of a
wind tunnel.

MOMENTUMTHEORY IN GROUND EFFECT

Initial considerations. - Even in the absence of ground effect,
the induced velocities at the rotor may be large compared to the free
stream velocity. Consequently, the induced performance of the rotor
(refs. 25, 30, 31) becomes decidedly nonlinear at low speeds. Even
the alterations in the resultant flow which result from small descent
rates (ref. 24) magnify the nonlinearities in performance. A ground-
induced upwash is the equivalent of an aerodynamic sink rate and may
be expected to have effects similar to those shown in reference 24.

Since it will be shown that the ground induces large interference
velocities, it is necessary to provide a systematic procedure for the
evaluation of the resulting nonlinear induced performance. In the
present study, these effects will be evaluated using suitable modifi-
cations to the momentum theory presented in references 24 and 25. The
derivations are rather simple and provided herein in their entirety.

Induced velocities. - Figure 3 shows the force and velocity vectors
at the rotor. It is assumed, following "Glauert's Hypothesis" (ref. 32)
that the total mass flow of the rotor, at any forward speed, is that
flowing through a circle of radius R with a velocity of VR. This hypo-
thesis may be justified by observing that simple vortex theory leads to
the identical result (ref. 33). For a rotor, the induced velocities in
the far wake are twice those at the rotor. Thus, since the vertical and
horizontal forces are equal to the timewise rate of change of momentum
in the vertical and horizontal directions

L = -2p_R2VRw 0 (1)

D = -2p_R2VRU 0 (2)



The relationship between the forces and the induced velocities is

obtained by dividing equation (2) by equation (I) to yield

D _ Uo (3)

L w0

The resultant force vector of a rotor is essentially perpendicular to
the rotor disk, thus

D Uo
- - tan c_ (4)

L w0

The resultant velocity VR through the rotor is obtained from figure 3
as

!

VR ="\I'(V+ u0 + Au) 2 + (w0 + Aw) 2 (5)

Now, divide each side of equation (5) by -w0 and then use equation (4)
to obtain

VR _ V Uo Au 2 Aw 2

_00 +_00 + + +
(6a)

V + tan _ + Au 2 2- + + -- (6b)

w0 Wo

At this point, it is convenient to define a reference velocity wb, chosen
to be the vertical component of induced velocity while hovering in free

air; thatis, Wh = w0 when V = e= Au = Aw = O. Substituting these values

into equation (6) yields the result that VR = -wh. Now substitute that

result into equation (1) and solve for wh to obtain

,r--L--- (7 )

Wh = - "_2p_R2



Observe that the negative value of the square root is chosen in equation

(7) since, with the present sign convention, equation (1) requires a

negative induced velocity to produce a positive lift. Now solve equation
(1) for wO, and divide the resulting equation by equation (7) squared, to

yield

-L

Wo = 2p_R2VR _ -I

2 L V R
Wh 2

2p_R

(8)

Then multiply both sides of equation (8) by w0 to obtain the general
result that

wo(Wol=
\Wh/

(9)

For the specific problem of the rotor in ground effect, substitute

equations (6) into equation (9), and square both sides of the

equations to obtain the momentum quartic as

#wof:
\Wh/ (10a)

4

(V 0 + tanot+ Auf Awlwd + (1+"o/
(lOb)

Wake skew angle. - The wake skew angle, the angle between the
vertical axis and the wake centerline, is a major parameter of the

current study. This angle may be obtained by inspection from figure

3, together with the use of equation (4), as

10



V Au
- + tan_ +

w0 w0
tanx = - (11)

1 + a_.ww

w0

In the present investigation, the skew angle X must be used at the out-
set to determine Au and Aw, and the angle of attack will be used as

an input value. Under such conditions, it is often more convenient

to solve equation (11) for V/w 0 to obtain

(V = _ 1 + Aw tanx - tan_ - -- (12)
w0 Wo

Reference 25 has shown that for level flight in free air, cos × =

(w0/wh)2;however, as noted in reference 24, this relationship is
more complicated when an additional vertical velocity, such as Aw,

is present. Therefore, multiply by sides of equation (11) by

-(l+Aw/w O) to yield

(i __- tan× + Aw V + tans +
= w0 w0 (13)

Then substitute equation (13) into equation (10b) to obtain

Wo\4

(I + W_) 2 (I + tan2 X)

(14a)

Wo_2 : cos L
Wh/ I + A___ww

w0

(14b)

11



Finally, solve equation (14b) for cos X, to yield

cosx

2

= I + (15a)

cosx wo. -- + (iBb)

wh wh

Induced shaft power. - The induced power at the shaft is given

by the scalar (or dot) product of the force and velocity vectors.
Using the present sign convention, this power is

Ps = " _ ' _ (16)

Substitute the force and velocity vectors from figure 3 into equation

(16) and expand the scalar product to obtain

Ps = - D (V + u0 + Au) - L (w0 + Aw) (17)

The shaft power when hovering out of ground effect is a convenient

reference power. For this condition, w0 = wh and V = D = Au = Aw = O.
Substitute the foregoing values into equation (17) to obtain

Ph = -l-Wh (18)

Now, nondimensionalize equation (17) by dividing it by equation (18),

and use equation (4) to obtain

,s(v wo_hh = + tans + _hh sec2(_ + Wh (19)

or, by rearranging terms

woF, =_ + tans + sec2_ + A_O]
(20)

12



WAKE ROLL UP

Observed roll up. - The wake of a planar lifting system does not
remain flat but rolls up shortly after passage of the aircraft. This
roll up occurs very rapidly for low aspect-ratio systems such as rotors.
Reference 27 shows clearly that the roll-up process is already well
under way by the time that the wake reaches the trailing edge of the
rotor. This effect is illustrated in figure 4 (from ref. 27) which
presents the contours of vorticity measured almost immediately behind
the trailing edge of a rotor disk. The intersection of the theoretical
inclined-cylinder wake and the survey plane is indicated. In the absence
of roll up, the contours of vorticity would be expected to lie on, or
within, the elliptical intersection region. Instead, the measured
vorticity lies above the outer extremities of the ellipse. The wake is
already essentially completely rolled up, and it has descended only
about half as far as would have been anticipated in the absence of roll

up.

Simple win 9 wake. - The wake of a rotor has several gross
similarities to the simpler wake of a wing. Consider the horseshoe
vortex of a uniformly loaded wing (fig. 5). The center of this wing
lies directly on the bound vortex which thus has no effect on the
induced velocity at that point. Each of the semi-infinite vortexes
trailing from the wing tips contributes wo/2 to the total induced
velocity at the center of the wing. The situation is altered in the
far wake where the bound vortex is too distant to have any effect.
At this location, each of the trailing vortexes is essentially doubly
infinite; thus, each contributes an induced velocity of w0 for a
total induced velocity, as expected, of 2w O.

The vortexes themselves are convected by their own induced velocity
field. Consider a point far downstream lying exactly on one of the
trailing vortexes. Once more the bound vortex has no effect because
of its distance. Under the assumption that the trailing vortexes are
straight,_the vortex upon which the point lies will also have no effect
on the induced velocity at that vortex. Only the opposite vortex
influences the velocity at the chosen point. Since the total distance
between vortexes is twice that from either one to the center of the wake,
the total velocity induced on the trailing vortex is only wn/2. Thus,
the final inclination of the vortexes to the main flow is onTy one-half
the vortex inclination calculated at the center of the wing.

The foregoing analysis does not mean that the vortexes and the center
of the wake follow totally different paths, for the greatest velocities
throughout the wake will still occur somewhere between the trailing
vortexes. However, the local angle of the flow between the vortexes
will not be normal to the vortexes. At any cross-section normal to

13



the trailing vortexes, there will still be someflow in or out of the
plane. Even at an infinite distance behind the wing, a true uniplanar
(Treffetz plane) cross-flow can only be achieved for vanishingly small
lifts for which it is permissible to ignore the wake deflection.

Choice of wake angle. - The choice of the wake skew angle will have
a significant influence on many calculated results, and the foregoing
discussion indicates a multiplicity of choices for the skew angle which
should be used. Undoubtedly, it would be best to calculate the actual
deformed wake shape rather than to idealize the wake so that it lies
along a straight line. Such calculations have been performed for simple
cases in free air (for example, ref. 34); however, the complexity and
expense of similar calculations in ground effect does not appear to be
worthwhile, even if all of the computational convergence problems could
be overcome.

In practice, it is clear that the use of the skew angle obtained from
momentum theory leads to reasonable results for performance calculations
(ref. 35) and for calculating the induced flow over most of the rotor
(ref. 27). Even in free air, however, reference 27 has shown that it is
necessary to modify the momentum-theory skew angle to account for roll up
when calculating the flow behind a rotor. More specifically, in examining
the closely analogous case of wind-tunnel interference, reference 21 has
demonstrated the need to use an effective wake skew angle, representing
the skew angle of the rolled-up wake vorticity, when calculating the
wall-induced interference velocities. A similar dual skew-angle approach
will be used herein, with the momentum skew-angle × beina used to cal-

culate induced performance, and an effective skew angle _e being used
to calculate the ground-induced interference field.

Effective skew angle. - The use of an effective skew angle appeared
with reference to helicopters in reference 27 where the half-deflection
analogy to wings was used. A more elaborate analysis of the elliptically
loaded wing has been made by Cone (ref. 36) who considered the motion
of the center of gravity of the entire vortex system behind the wing.
This analysis leads to a factor of 4/_ 2 rather than one-half.

The difficulty with wing analogies is that they are uniformly based on
the assumption that the wake deflections are so small that the wake angles
are directly proportional to the down-wash velocity. This assumption
is an obvious contradiction under hovering conditions where both the

momentum and effective wake skew angles must coincide at × : ×e : 0°"

If the horizontal interference is neglected, the tangent of the wake
deflection will be equal to w0/V; so that the large-angle equivalent
of Cone's analysis becomes

2
(21)

tanXe : T tanx

14



An equivalent equation could be written for the simple factor of one-half.

Several of these approximations are compared in figure 6. It is evident

that there is little significant difference unless X is on the order

of 30 degrees or less. Consequently, equation (21) will be used to

define the effective skew angle in the present analysis.

COMPUTATIONAL PROCEDURE

The calculation begins with given values of rotor diameter, height above

the ground, angle of attack with respect to the ground, and an assumed

axisymmetric rotor load distribution. A value of the momentum skew

angle X is chosen, and the effective skew angle ×e is calculated
from equation (21).

The next step is to obtain the ground-induced interference velocity ratios

Au/w 0 and Aw/w O. If either a single doublet string or a nest of doublet
strings is used, the programs of reference 20 are directly applicable for

any angle of attack when used in conjunction with equation (4). If vortex

cylinders are used to represent the wake (in which case, the angle of attack

must be zero), the program of Appendix C in reference 23 can be used pro-
vided that it is modified to obtain the average interference velocities

over the entire rotor disk.

Once the interference velocity ratios are in hand, the rotor forward

velocity ratio is obtained from equation (12). Then the induced velocity

ratio is calculated using equation (lOb). Finally, the shaft power ratio

is obtained from equation (20), and V/w h is obtained from the identity:

V V w0

wh w0 wh
(22)

It will be observed that the forward velocity is a product of the

calculation and not an initial value. This procedure is required, since

it is necessary to know the skew angle to calculate the interference
velocities, which, in turn, influence the skew angle. The foregoing

procedure eliminates the necessity to cycle iteratively through the
entire calculation. It is simpler to perform the calculations for a

range of skew angles and then to interpolate between the calculated
results for the desired forward speed.
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RESULTS AND DISCUSSION

DISTRIBUTION OF GROUND-INDUCED INTERFERENCE
OVER THE ROTOR DISK

Hoverin 9 flight. - The distribution of the ground-induced interference
velocities over the longitudinal axis of a hovering rotor is shown in
figure 7. Obviously, an identical result would be obtained for any
diameter of the rotor because of the symmetry of rotor and wake when
hovering.

The vertical interference velocity is symmetric about the center of the
rotor and is nonuniformly distributed over the rotor disk (fig. 7a).
The nonuniformity is particularly obvious for the triangular disk load
distribution where it results from the zero load at the rotor center.
Because the disk load distribution of real rotors must always be zero
at the center (ref. 27), a similar distribution will always be present
in practice.

The longitudinal _nduced velocity over this axis is really a radial flow,
generally inward, which is axisymmetric over the disk. The antisymmetry
indicated in figure 7b results from the presentation in terms of a stream-
wise velocity rather than a radial velocity. Regardless of load distri-
bution, this component of interference is nonuniform, being greatest at
the rotor tips and decreasing to the s_nmetry-forced value of zero at
the center of the rotor. The nonuniformity is greatest for the triangular
disk load distribution, where, in close proximity to the ground, the flow
is outward near the center of the rotor.

Reference 13 examines the adequacy of the linearized vortex theory in
hovering flight near the ground, and it observes that the actual dis-
tortions of the wake from the assumed cylindrical shape can significantly
affect the accuracy of calculated results. Nevertheless, reasonable
qualitative results can be obtained. For example, reference 12 has
computed the flow field near a triangularly loaded rotor in ground
effect and has shown (fig. 8) that the calculation indicates a large
region of net upwash below and extending upward through the rotor. This
region was evident in the balsa-dust flow pictures of reference 9 (fig. 9).

Forward flight. - Figures I0 and II show the distribution of the
vertical and longitudinal ground-induced interference velocities over
the longitudinal axis of the rotor for several skew angles representative
of forward flight. A similar presentation for the lateral axis is given
in figures 12 and 13.
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The ground-induced interference velocities are evidently very nonuniformly
distributed over the rotor disk. The longitudinal growth of vertical inter-
ference (fig. I0) is particularly significant. The analysis of reference 16,
which was limited by the relatively slow computational speed of the computers
available at that time, assumedthat the value of interference at the rotor
center was a suitable average of the interference over the rotor. Exami-
nation of figure 10 indicates that this assumption was not com_letely
adequate, particularly when nonuniform load distributions were considered.

It is clear from figures 10 to 13 that the ground-induced interference
velocities can attain values sufficiently great to alter the load
distribution over the rotor. Ideally, the interference should be cycled
int_ the rotor performance equations to obtain a new load distribution,
eventually iterating to a load distribution compatible with ground
interference. Unfortunately, the wake models used for the ground inter-
ference have been simplified to the point where time-dependence has been
lost. As pointed out in reference 12, the time-averaged velocities
obtained by the present method are unsuitable for the calculation of
blade loads, thus, the aforementioned interation would be invalid.

Since it is not possible to perform the calculations for the actual blade
loading, and because the idealized wake is significantly deformed in
practice (refs. 13, 22, 23), exact correlation between experiment and
theory is too much to expect. Instead, somewhatqualitative results must
be anticipated. Numerical utilization of the theoretical results depends
upon correlation with controlled experiments. Irrespective of the absolute
numerical accuracy, it should be possible to increase the overall under-
standing of the problem by a qualitative comparison of theory and
experimental observations.

HOVERINGPERFORMANCEIN GROUNDEFFECT

Ground-induced interference velocities. - In hovering, the axial

symmetry of the flow requires that the average value of the streamwise
interference velocity must be zero. The average vertical interference

velocity ratio (_v/w 0 is shown as a function of height above the ground
in figure 14. This average interference is always an upwash, and it
increases rapidly as the rotor approaches the ground. There is a sig-
nificant difference in the average interference velocity as the rotor
disk load distribution is changed, particularly in the range of heights
of primary interest (0.3 < H/R < 2). Figure 15 gives a similar presentation
of the interference velocity at the center of the rotor. Comparison of
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figure 15 with figure 14 shows that the single value at the center of

the rotor with the triangular disk load distribution has no relationship

to the corresponding average value. Significant differences exist for

the uniformly loaded rotor as well; for example, at H/R = l, the average

w = -0.37, whereas the value at the center of the rotor
value is Aw/004
is AW/W 0 = - . 8.

Rotor induced velocity. - The ground-induced interference velocities

shown in figure 14 are relatively large compared to the rotor's own induced

velocity, and, in the absence of any free stream velocity, the interference

results in a major decrease in the mass flow through the rotor (equation (6)).

Because of the reduced mass flow, the average rotor induced velocity must

be increased to maintain constant lift (equation (lO)). The required ratio

of rotor induced velocity in ground effect to that out of ground effect

wo/w h is shown in figure 16. The increase in rotor induced velocity
is rapid as the ground is approached; it must increase by about 20 percent

at H/R = l.O, about 50-percent at H/R = 0.5, and about lO0-percent at
H/R = 0.3.

The required increase in rotor induced velocity is obtained by increasing

the average angle of attack of the blades; however, this increased angle

of attack does not necessarily imply any significant alteration of the

collective pitch setting. The ground-induced upwash itself causes an

increased angle of attack on the blades which may be sufficiently great

to create large regions of blade stall when operating very close to the

ground. This upwash, in terms of wh, is shown in figure 17.

Rotor shaft power. - The values of wo/w h and w/w h from figures
16 and 17 are Sufficient to calculate the rotor induced-shaft power from

equation (Ig). The result of this calculation is shown in figure 18.

These induced shaft power ratios agree closely with those given in

reference 37, as they should, since the presentation in reference 37 stems

basically from the analysis of Knight and Hefner in reference II. The

differences in hover between the present work and reference II are minor,

depending only on the addition of calculations for triangular loading in

the present paper. Reference 37 also collects comparisons of the theory
and both model (ref. ll) and flight test (ref. 8) data. These comparisons

indicate that the theoretical treatment yields reasonably adequate numerical

results in hovering provided that the rotor is not too close to the ground.

At very low heights, significant areas of stall were found on the rotor models

of reference If. The possibility of such stall because of the large ground-

induced upwash has already been noted.
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FORWARD FLIGHT PERFORMANCE IN GROUND EFFECT

Character of Interference Velocities. - The concept of a vanishingly
small rotor in ground effect contains obvious inconsistencies since,
proceeding in a formal manner, the ratio H/R must be infinite. None-
theless, the use of this artifice does allow the ground-induced inter-
ference velocities to be expressed in a closed form which provides
some insight into the general character of ground interference. The
derivation of these closed forms is provided by Appendix A of Reference 18,
which, together with the appropriate conversions for ground effect given
in reference 16, leads to the following equations:

Aw _ (_)2 I 6 + tan _)Wo = 4 w,L aw,D
(23a)

2

w0 4 u,L + _u,D tan a
(23b)

where

6w,L

u,L

- _I13 cos4× +½1 (24a)

sinxcos3x + sin×cosx + tan (24b)

2sinxcos3 x I _)6 = 1_ _ sin3xcos× _ 4cos3x - _-tan (24c)
w,D

4 I cosx _ (24d)6 : 1_ sinxc°s2x - 3sin2xc°s2x + _- I + cosx_
u,D T_

Equations (24) are derived on the assumption that the path of the wake is
downward to an intersection with the ground. These equations are valid
for -90 o < × ( 90 o . Although such conditions are not treated specifi-
cally in the present paper, rapid descent toward the ground will leave
the wake above the rotor so that it never does intersect the ground.
In such cases (× > 90o), the appropriate interference factors, replacing
equations (24), are
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I (25a)
aw,L = - 2-_

I X

6u,L : 2_ cot _ (25b)

I ×
6w,D : - 2-_ cot _- (25d)

I cosX

6u,D - 2 (i - cos×)
(25d)

The interference factors defined by equations (24) and (25) are presented
as a function of wake skew angle in figure 19. The region of primary
interest herein is that for steady level flight; that is, skew angles
between 0° and 90o . The interference factors related to the vertical

interference velocity (6w L and 6w D) display closely analogous behavior
within this range. Both _actors ate negative. Either positive lift or

positive drag will produce an upwash (_w/w 0 < O) which will oppose the
rotor induced vertical velocity. The magnltudes of these factors are
greatest near hovering flight (X = 0°) and their magnitudes decrease

rapidly as the forward speed (or ×) increases. The. factors. _.u,L and

6u D, which determine the longitudinal, or streamwlse, InterTerence
velocity are similar to each other throughout the range of skew angles
between 0° and 900 . Both of these factors are positive. Either posi-

tive lift or positive drag will result in an interference velocity which

opposes, and effectively reduces, the free-stream velocity. This stream-
wise interference is small both in hover (X = 0°) and at high speed

(X approahing 900). The maximum streamwise interference will be encoun-

tered at a relatively low forward speed with a value of X on the order
of 300 .

It will be shown subsequently that the streamwise interference plays
a significant role in determining rotary wing ground effect; how-
ever, certain conclusions can be drawn from a first-order analysis of
the vertical interference velocities. Under the assumption that

= 0o, the vertical interference depends only on _w i (eq. (23)).
As the forward speed is increased (X increased), the"_rt_cal ground-
induced interference velocity decreases as rapidly as cos_X (eq. (24a)
and fig 19). In contrast, in the absence of ground effect, the normal
reduction of wo with forward speed is much slower, at a rate of ._o_

(eq. (15a) with Aw/w 0 = 0). This disparancy in rates is magniT1ea
further_by the need to employ the momentum skew angle in determining

V_s X,.and the more rapidly changing (fig. 6) effective skew angle
for cosCX. Thus, if the rotor is sufficiently close to the ground to

have a large favorable ground effect, it is likely that the ground
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effect will decrease more rapidly than the intrinsic rotor efficiency
increases as the forward speed is increased. The net result is that,
in ground effect, the required rotor power will increase, rather than
decrease, as forward speed is increased within the transition range.

A second observation can be made immediately from figure 19. Since
the two vertical interference factors are almost identical, and the
two streamwise interference factors also display almost identical
behavior, it is evident (eq (23)) that an increase in D/L (or _) will
increase ground effect. Indeed, an angle of attack of 45o (which re-
sults in D/L = 1.0 (eq 4)) will essentially double the ground effect
at a given skew angle. Conversely, an angle of attack of -45 ° (D/L = -I)
at the same skew angle will essentially negate ground effect. Note
however, that the constant skew angles will result in different forward
speeds (eq (12) and (22)). At constant forward speed, negative angle
of attack increases the wake skew angle and further decreases ground
effect. Conversely, positive angle of attack decreases the wake skew
angle with, a further increase in ground effect. Thus, angle of attack
excursions significantly smaller than 45 o may produce effects of the
magnitude described.

Interaction of ground effect and rotor performance. - Figure 20
shows several of the factors influencing the induced power in ground
effect and illustrates the interactions that lead to the required
induced power. This figure was prepared using cylindrical vortex
sheets to compute the ground-induced interference. The rotor angle
of attack is zero, and both uniform and triangular disk load
distributions are considered. Calculated results are presented for
flight in free air as well as at a rotor height of one radius.

As noted earlier, in free air, the rotor induced velocity decreases
as 'cos × when the speed increases, and equation (19) shows that the
shaft power ratio Ps/Ph is identical to wO/w h under the assumed con-
ditions (_ = Aw = 0 ). Thus, the dashed lines in figure 20 show
both ratios in free air.

In ground effect, the mass flow through the rotor is diminished by
the presence of the indicated interference velocities (eq. (6)). To
maintain the same lift with the reduced mass flow, the rotor must
work harder with an increase in w0 (eq. (I0)). Thus, as indicated
in figure 20, wo/w h in ground effect is as much as 25-percent
greater than in free air. Finally, the shaft power ratio in ground
effect is obtained from equation (19). Ground effect at this rotor
height represents a saving of about 20-percent of the induced power
when hovering. The saving vanishes rapidly as forward speed is in-
creased. Figure 20 shows almost immeasureable ground effect when
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the forward speed is only about three-quarters of the hovering in-

duced velocity wh. Furthermore, the maximum induced power no
longer occurs when hovering; it now occurs at some significant for-

ward speed. This possibility was discussed in connection with figure

19, was noted in the more cursory analysis of reference 16, and is
in distinct contrast to the results of reference 15. The nature of

the present result is confirmed by the experimental measurements of
references 4 and 5.

Choice of wake model.- Once the general character of the ground

effect has been established, the adequacy of the various wake models

must be assessed before proceeding to examine fully the effects of

height above the ground. Figure 21 presents the induced shaft power

in ground effect as calculated using three of the wake models dis-

cussed earlier. In comparing these calculated results with each other,

it would be anticipated that the vortex-cylinder wake model should pro-

duce the most nearly correct results since it most nearly represents
the character of a real rotor wake. This presumption is supported

further by the previously noted fact that powers computed for hovering

using this wake model agree reasonably well with the measured power in
ground effect.

The single doublet string wake model has been shown to indicate the

correct trends for power as a function of speed in ground effect. Figure

21 shows clearly that this model is hopelessly inadequate for quantita-

tive calculations of ground effect. The result should be anticipated.
This wake model represents only a vanishingly small rotor. The calcula-

ted results are no more than the extrapolation to small ground clearances

of nondimensionalized results obtained from a limiting case in which the

height of the rotor above the ground is infinite.

The multiple doublet string model of the wake is a reasonable approxima-

tion to a cylindrical wake provided that the point of interest is some-

what removed (perhaps several tenths of a radius) from the wake. In

this application, the portions of the wake which generate the interfer-

ence are either at ground level or in the image system below the ground.
As a result, this model should be reasonably adequate provided that

H/R has a value of several tenths. Inspection of figure 21 shows that

the anticipated result is obtained. The multiple doublet string wake

yields results close to those of the vortex cylinder wake at H/R = 0.5

and the two sets of results diverge at H/R =0.3.

For very low heights above the ground, only the vortex cylinder model

is adequate, and even its adequacy could be questioned because of

sparse verification experiments below H/R = 0.4. Unfortunately,
this model cannot be used unless _ = 0°. For other angles of

attack, the multiple doublet string model can be used provided that

the rotor is sufficiently far above the ground.
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Forward flight in _round effect at _ : 0°. - A series of calcula-
tions similar to those of figure 20 have been made for a wide range
of rotor heights. The resulting shaft powers for both uniform and
triangular load distributions are presented in figure 22. The corre-
sponding momentum theory values of wake skew angle are also shown on the
figure.

Figure 22 shows that the initial trend with forward speed of induced shaft
power in ground effect is an increase in required power. The magnitude
of the increase is greater as the ground is approached. The speed for
maximum power also increases as the ground is approached; it increases
from about 0.4 lWhl at H/R = 2 to about 1.6 lwbl at H/R : 0.i. The
influence of the ground-induced interference velocities on the momentum
skew angle is large. The increase in skew angle with forward speed
is slower initially than in free air. At the speed for maximum induced
power, the wake angle rapidly increases, and, at higher forward speeds,
the increase of skew angle with speed is more rapid than in free air.
At the lowest heights above the ground, the change from an almost
vertical wake to an almost flat wake occurs in a sudden jump near the
speed for maximum power. This rapid change in wake angle has already
been noted in reference 5. Indeed, reference 38, which examined experi-
mentally the analogous problem of the interaction of the rotor wake with
the floor of a wind tunnel, specifically refers to the rapid change in
wake angle as having a "snap through" action.

The lowest rotor heights in figure 22 are below those of most helicopters
even when resting on the ground. Nevertheless, an examination of the
indicated nonlinearities and multiple values of power is enlightening.
Obviously, the forward speed of the helicopter will not increase and
decrease to follow the curves of figure 22. Instead, the wake will pop
up to a high skew angle and the power will change in an essentially
discontinuous manner.

The appearance of multivalued powers generally indicates the existence
of a vortex-ring mode of rotor operation (as in ref. 24). That is not
the case in figure 22 since the wake skew angles are such that the wake
is always passing downward from, and not upward through, the rotor.

Now the forward velocity V is the velocity with which the rotor is
passing through the entire air mass; in the absence of winds, it is
the ground speed of the helicopter. It is not the effective aero-
dynamic speed of the rotor because the aerodynamic speed is really
the sum of the forward velocity V and the ground-induced streamwise
interference velocity Au. If the results of figure 22 are replotted
against the effective aerodynamic velocity V + Au, the presentation of
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figure 23 is obtained. It will be observed that the nonlinearities

in power and wake angle are totally absent in figure 23. The induced

power curves are smooth and continuous.

The momentum skew angle curves in figure 23 are a series of radial

lines through the origin. This result should be expected since,
from equation (12) with _ = 0°,

w0 + Aw = _ (V + Au) cot ×

wO w0

Multiply both sides of equation (26) by wo/w h to obtain

wo + Aw = V + Au cot ×

wh Wh

(27)

But from equation (19) with _ = 0°

Ps = w0 + Aw

Wh

(28)

Now substitute equation (27) into equation (28) to yield

Ps _ [_ (V+Au)]Ph cot X Wh

(29)

Equation (29) is obviously the equation of a series of radial lines,

with slope determined solely by X, when plotted in the coordinates of

figure 23.

It is clear when figure 22 is compared with figure 23 that the stream-

wise interference velocity Au plays a major role in determining the

performance of the rotor when flying forward in ground effect. Its
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omission, as in references 15 and 1G, can lead to significant errors
when the rotor is close to the ground. The magnitude of the stream-
wise interference increases along the wake below the rotor and leads
to severe gross distortions of the wake. These distortions, which
have resulted in operational difficulties with several helicopters,
can also be calculated qualitatively by the theory (refs. 22, 23),
and they have been the subject of numerous recent experimental studie_
(refs. 4-7).

Forward flight in 9round effect with _0o. - When the rotor

angle of attack is other than zero, the less accurate multiple-doublet

wake must be used for the calculation of ground effect. The induced

shaft power has been calculated and is shown for several angles of

attack in figures 24 (uniform disk load distribution) and 25 (tri-

angular disk load distribution) The minimum height above the
ground shown in figures 24 and 25 is O.7R when lel = 200, because

the angle of attack locally reduces the ground clearance at one edge of

the rotor. In examining these figures, it should be observed that

equation (19) and (20) include the effect on shaft power of producing

the horizontal component of force; that is, the propulsive thrust when

< 0°, and the rotor drag when e > O.

Qualitatively, figures 24 and 25 display the trends with angle of attack

that were noted in the discussion of figure 19; that is, negative angle

of attack significantly reduces ground effect and positive ground effect

significantly increases ground effect. These effects are large because
of the additive effects of angle of attack on both the ground interference

and the wake skew angle.

The power curves for H/R = 0.7 when _ = 20 o are of interest because of

their multivalued nature near V/_ h = -1.4. The mass flow through the
rotor is severely reduced by the ground-induced interference velocities;
the reduction in mass flow is so great that the power is increased
rather than reduced, for speeds on the order of 0.9 < IV/Whl < 1.5.
The combination of the interference velocities and angle of attack is
such that the resultant flow direction is upward with respect to the rotor.
Effectively, the rotor experiences a brief excursion into the vortex
ring state since it is really descending at a rate of Aw with a for-
ward speed reduced by _u.

Operational aspects of _round effect in transition. The primary
benefit of ground effect is that it allows the helicopter to take off

with gross weights in excess of those allowable for hovering in free

air. Under such conditions, the helicopter is extremely underpowered
and it is sensitive to relatively small changes in power required.

Because of this sensitivity, the interaction between angle of attack and

ground effect assumes some operational significance. These operational
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aspects will be discussed with the aid of figure 26 which shows the
required induced shaft power for several angles of attack in free
air and in ground effect at a rotor height of one radius.

Consider the case of a helicopter overloaded to the point where it
can hover with only a small power margin at a height of one radius.
This overload condition is allowable in hover only because the induced
power is reduced by about 20 percent in ground effect. Longitudinal
cyclic pitch is applied to tilt the rotor forward, thus initiating
forward flight. This attitude change has a greater effect on power
in ground effect than in free air. Figure 26 shows that for an extreme
case of a 20-degree rotor tilt, the induced power in ground effect would
increase by about 20 percent rather than about 9 percent in free air.
Indeed, at _ = -200, the induced power in ground effect is essentially
equal to that at _ = 0° when hovering out of ground effect. Under
such conditions, the helicopter must sink as it accelerates, and some
altitude margin must be allowed if ground contact is to be avoided.
Fortunately, the sink rate leads to an increased ground effect which
tends to limit the total loss of altitude.

It is noted that this portion of the takeoff is omitted in the
optimization analyses presented in references l and 2, which merely
assumea uniform acceleration rate of 0.2 g during this initial portion
of the takeoff maneuver. This acceleration implies that _z_ -ll °, which
is a more modest rotor tilt than that of figure 26. Even so, interpolation
of figure 26 implies that somesettling is required, and the recommendation
of reference 2 in favor of a 1.37 m (4.3 ft) skid height provides an
allowance for settling. I;_ any event, it is clear from figure 26 that
the initial acceleration should be mild whenever the terrain allows a
slight increase in distance over the nearest obstacle. This caution
need not be a major penalty; halving the acceleration rate to O.l g
would require less than an additional 30 m (lO0 ft) of space for the
sample case of reference I.

The optimum climbout profile of references l and 2 calls for nose-up
rotation and climbout once the helicopter has reached a forward speed
of about 0 7 wh• I I • The trends shown in figures 24 and 25 indicate
that this rotation will increase ground effect and briefly add an
initial boost to the climb over that attainable with the ground-effect
routines used in the reference papers.

Landing in ground effect is generally in a decelerating modewith rear-
ward rotor tilts on the sameorder as that shownin figure 26. It is
observed that as the helicopter slows downthe initial appearanceof
ground effect is adverse at m = 200. The rotor efficiency is reduced
so muchby decreased massflow that the required power is greater in
ground effect than in free air, despite the ground-induced upwash.
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As noted earlier, if the rotor is sufficiently close to the ground, the
rotor is forced prematurely into the vortex-ring, or power-settling,
state because of the reduced massflow. This effect does not carry
the sameconnotations of danger in ground effect as in free air (ref. 24)
for several reasons. First, there is insufficient altitude to build up
to dangerous vertical descent velocities. Second, the pilot is planning
to descend in any event and is prepared to setCle. Finally, the maneuver
is generally transient and of brief duration. Rather than presenting a
danger, the only effect is a pronounced shuddering and a briefly increased
vibration level.

Finally, as the helicopter speed decreases to a value less than IV_h[,
favorable ground effect increases rapidly and attains values significantly
greater than at (4 = 0o, As the helicopter approaches hover, the final
leveling of the rotor causes no perceptible change in power at H/R = 1
(fig. 26), although someincrease in power may be noted at lower heights
(figs. 24, 25).

Obviously, if the helicopter forward speed could be held to zero as the
rotor was tilted, the flow patterns for positive and negative angles of
attack would bemirror images of each other. In this case, the shaft
power would be independent of the direction of rotor tilt. That this
result is not attained in the present calculation is due to the assumed
wake in ground effect (fig. 2). The assumedwake is always required to
flow off in the downstream direction. In reality, if the rotor was not
leveled as zero speed was approached, the wake would snap forward along
the ground at some very low speed, and the power required at _ = 20 o
would increase rapidly to that required at e = -20 o . In practice, the
helicopter is retrimmed to _ = 0o as hovering is approached and this
inconsistency is of little consequence.

COMPARISON WITH EXPERIMENT

Reference 5 presents wind-tunnel measurements of the power required in
ground effect for a rotor 0.71 R above the ground. Power measurements
were not presented for the out-of-ground-effect case in that paper; thus,
the present comparison is referenced to the theoretical in-ground-effect
hovering power Ps,h rather than Ph- It was assumed that 80 percent
of the hovering shaft power was induced power.

The measurements of reference 5 are compared to the theoretical calculations
for uniform and triangular disk-load distributions in figure 27. Considering
that the actual load distribution is unknown and not axisymmetric, and that
the large wake deformations at low speed are known to affect the results
of the linearized vortex theory (ref. 13), the theoretical values must be
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considered to be reasonably close to the measuredpowers. In particular,
the overall initial increase in induced power as the rotor forward speed
is increased from hover is present in both the calculated and measured
powers.

WAKEDEFORMATIONIN GROUNDEFFECT

The effect Of wake deformations on the performance and the flow-field
of hovering rotors has been discussed in reference 13 and will not be
considered further herein. The wake deformations in qround effect at
low speed are of interest because of recent operational problems ascribed
to such deformations (refs. 4-7). Since these effects were first encountered
as a result of studies of wind-tunnel interference (refs. 22, 23, 38, 3g),
the implications with respect to helicopter operational problems did not
becomefully evident until the studies of references 4 and 5. Because
of the importance of wake deformation, particularly with respect to
tail-rotor operation, a brief discussion of these deformations is
included at this point.

Calculated flow. - Figure 28 (from ref. 23) compares the flow field
of a rotor in ground effect with the corresponding field in free air. The
vectors indicate the direction and relative magnitude of the local flow
at a point defined by the base of the vector. The flow is shown for the
plane of symmetry of the rotor and for a plane at the location of the
ground 2.6 rotor radii below the rotor. At this height above the around,
the previously presented results indicate that ground effect has essentially
no effect on the rotor performance. The location of the rotor disk and
the intersections of the rotor wake with the vector planes are shown.

In free air, the air approaching the rotor from about its own vertical
height is accelerated and inclined upward to spill over the leading-edge
of the rotor and then down through the wake. Well below the level
of the rotor, the fluid passes smoothly around the wake with a sliaht
downwash. Behind the rotor, the flow is retarded and redirected downward.
These trends are magnified as the forward velocity is decreased from that

corresponding to × = 70 o (fig. 28(a)) to the velocity for i< = I0 °(fig. 28(g))
where the net flow velocity behind the rotor maybe opposite to the free-
stream direction.

The entire flow pattern is altered to some extent by the presence of the
ground; however, the deformations of primary interest herein occur near
the intersection of the wake and the ground. Here the flow is severely
retarded immediately ahead of the wake and accelerated behind it. At
7 : 600 (fiq. 28(b)I the flow on the ground ahead of the wake is essen-
tially stagnant. At × = 50o (fiq. 28(c)), the flow at this location is
opposite to the free stream. The magnitude of the reversed flow, and the
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region which it occupies, grow as the wake angle is depressed further

(fig. 28(d) to 28(g)). The vortex-like character of this flow is evident,

particularly for × _ 300 (fig. 28(e) to 28(g)). This effect first achieves

significant prominence at the skew angles which correspond to the region

of rapid wake-angle change and power-curve inflection noted earlier in the

discussion of figure 22. The cause of those nonlinearities was shown to

be the large streamwise ground-induced interference velocities. The cause

of the flow reversal of figure 28 is the same streamwise-interference

velocity which grows to unmanageable proportions near the lowest portions
of the wake.

In the presence of such powerful flows, the wake deforms from the simple

inclined cylinder used for the present calculations. References 22 and 23
demonstrate qualitatively that the wake deformation itself should augment

the calculated effects, and these references also confirm the qualitative

analysis by comparing the calculated flow with the flow observed in

reference 40 (see fig. 29). The actual flow is much like that illustrated

in figure 30. The wake streams forward along the ground and ahead of the

rotor, and it rolls up into a large vortex which lies near the ground and

assumes a horseshoe shape around and behind the main wake. Behind the rotor,

the flow along the ground is accelerated and passes off smoothly.

Operational significance of wake distortion.- The significance of the

wake distortion in ground effect has received prominence (refs. 4 to 7)

recently because of directional control problems encountered in varying

degrees by operational helicopters. The particular problem was a loss

of directional control when hovering in ground effect with winds from

the rear. In the present context, this condition corresponds to low-speed

tail-first forward flight.

Wind-tunnel tests were conducted to examine the directional stability
problem in detail (refs. 4, 5). A number of effects, largely additive,
were found to have caused the problem. First, the power required by the
main rotor increased with wind speed (fig. 22), and, thus, additional tail-
rotor thrust was required to balance the main rotor torque. Second, in
rearward flight, the fuselage moments were basically unstable, and this
instability was worsened by the fin required for normal forward flight.
Additional tail-rotor thrust was required to balance these unstable fin
and fuselage moments. Finally, at some critical wind speed, the tail rotor
became immersed in the rolled-up ground vortex. Since both the tail rotor
and the ground vortex rotated in the same direction, the effective rotational
speed of the tail rotor was reduced, reducing its maximum thrust capability.
This reduction in available thrust occurred simultaneously with the increased

thrust requirements required to offset the main rotor torque and the adverse
fin and fuselage moments. The result, under unfavorable conditions, led to
an uncontrolled yawing motion which could be stabilized only after the heli-
copter had almost completely reversed its heading.
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Tile factors which led to this problem will generally always be present

when hovering in ground effect with tail winds; however, the loss of

control can be avoided by a judicious choice of tail rotor location and

direction of rotation. Several possible solutions are explored expe[i-

mentally in references 6 and 7. The overall phenomena involved do

introduce the need to examine ground effect as one of the critical

design factors for rotors in general and tail rotors in particular.

CONCLUSIONS

This study of rotors in forward flight within ground effect indicates
the following conclusions:

I. Ground-induced interference has the character of an upwash

and a streamwise interference velocity which opposes the free-stream

velocity. Both interference velocities may be large, and both oppose

the normal flow directions through the rotor with consequent large

effects on the induced efficiency of the rotor.

2. In hovering at small heights above the ground, the ground-
induced upwash produces large gains in efficiency; however, its
effect on mass flow may result in significant amounts of blade stall.

3. In general, the induced shaft power of a rotor in ground

effect increases, rather than decreases, as the forward speed is

increased initially from hover.

4. At very low heights above the ground, the power requirements
become decidedly nonlinear with speed primarily as a result of the
action of the streamwise component of ground-induced interference
velocity. This streamwise interference becomes greater along the
wake as the wake approaches the ground. It produces a ground vortex
which has been shown previously to be one cause of directional
instabilities in near-hovering flight. The magnitude of the effects
engendered by streamwise interference is so great that it cannot be
ignored in the analysis.

5. Rotor angle of attack has a strong influence on ground

effect in forward flight; forward tilt decreases ground effect and

rearward tilt increases it. In the latter case, ground effect can

become so great that it pushes the rotor into the vortex ring state

of operation with a loss, rather than a gain, in rotor efficiency.
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Figure 29. Comparison (from reference 23) of the calculated flow field

with a tuft-grid photograph from reference 40. Observe that the actual

wake deformation is greater than the calculated deformation. Tuft grid

and plane of calculation are 0.13 R to side of rotor. Calculations

assume triangular load distribution. H/R = l.O, X : 350.
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